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Abstract

We introduce three typed-effect kernels that form a minimal, compositional basis for reli-
able multi-agent systems. The Episode Kernel K12 specifies single-agent execution with twelve
orthogonal components (state, memory, effects, capabilities, randomness, quota, policy, observ-
ability, locale; plus pure transition/output functions and identity). The Graph Kernel G9 lifts
episodes into typed workflow graphs with explicit orchestration slots (router, scheduler, ledger,
metrics, monitor) and laws for safety (deadlock guards), governance (policy non-bypass), and
auditability (append-only evidence). The Market Kernel M7 sketches seven primitives for cross-
organization invocation and settlement that compose with G9. We provide operational rules,
laws (e.g., audit-before-mutation; monotone quota; locale narrowing), and proof sketches (replay
reproducibility, exactly-once effects within a retry horizon, and graph liveness under guarded cy-
cles). We show how these kernels align with effect-handler semantics and established distributed-
systems patterns (CRDT convergence, SAGAs, tracing, token-bucket metering) while remaining
language-agnostic. We release a reference implementation and conformance tests as supplemen-
tary artifacts.

1 Introduction

Large language model (LLM) agents are transitioning from prototypes to critical infrastructure.
Production deployments require compositional guarantees: predictable local execution; safe, ana-
lyzable coordination; and auditable, cross-organization calls with verifiable evidence. We propose
that these needs crystalize into a small set of typed-effect kernels whose laws can be checked stati-
cally and enforced at runtime.

Contributions. (1) The K-12 Episode Kernel—a 12-component context and law suite for
single-agent episodes with pure transition/output functions. (2) The G-9 Graph Kernel—a
typed orchestration layer with router/scheduler/ledger/metrics/monitor as first-class, checkable
components. (3) The M-7 Market Kernel—seven primitives for discovery, capability negotia-
tion, remote execution, and settlement. (4) Correctness claims with proofs or proof sketches:
effect containment; audit-before-mutation; monotone budgets; deterministic replay boundary; and
deadlock-freedom under guarded cycles. (5) A conformance suite and reference code (ancillary).
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2 Background

Typed effects and handlers. Algebraic effects and effect handlers supply the semantic backbone
for separating pure transition from operational interpretation and for composing effects modularly.1
Distributed graphs and evidence. Workflow/DAG engines (e.g., Dryad, Spark, Ray) highlight
typed dataflow and scheduling. Append-only logs, tracing, CRDTs, and long-running transac-
tion patterns (SAGAs) supply auditability, convergence, and compensation strategies. Quota/rate
control follows token/leaky-bucket patterns.

3 The K12 Episode Kernel

3.1 Definition

Definition 1 (K-12). The episode kernel is the tuple

K12 = ⟨Σ, M, E , C, R, κ, Π, Ξ, Λ, δ, λ, id⟩

with the following roles:

• Σ: in-episode agent state; M : durable memory (replicated; CRDT-compatible); E : effect
surface for all external I/O (tools, files, nets); C: capabilities (least-privilege resource de-
scriptors); R: deterministic randomness;

• κ: monotone quota (budget for tokens/time/$); Π: policy monitor (allow/deny/redact;
pre/post-conditions); Ξ: observability (metrics, tracing spans, structured logs); Λ: locale
(jurisdiction/residency tags; forks may only narrow);

• δ : Σ×Msg → Σ and λ : Σ×Msg → Out are pure; id is an immutable episode identifier.

3.2 Laws (selected)

Law 1 (Effect containment). All externally effectful operations occur via E ; δ, λ are pure and total
on their domains.

Law 2 (Audit-before-mutation). Any mutation of M or external write via E must be preceded by an
append to the episode ledger (recording id, capability, policy epoch, model identity, inputs/outputs
digests).

Law 3 (Monotone quota). All counters in κ are monotone non-decreasing; attempts to spend with
κ ≤ 0 are rejected by Π.

Law 4 (Locale narrowing). For any forked sub-episode e′, Λ(e′) ⊆ Λ(e); operations violating locale
constraints are denied by Π at call time.

1Canonical references appear in the bibliography.
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3.3 Operational semantics (sketch)

We model an episode configuration as (Σ,M,Λ, κ,Π, . . .) with small-step rules:

λ(Σ,m) = o pre(Π,Λ, κ, o)

(Σ,M)
m/o−−→ (δ(Σ,m), M ′)

where pre encodes policy/quota/locale checks and M ′ results from the audited effect if any. The
only side effects are those mediated by E and accompanied by ledger appends.

3.4 Derived properties

Deterministic replay boundary. Given the recorded randomness seed(s), model identity, policy
epoch, locale Λ, and the multiset of effect responses, the transcript is reproducible; non-determinism
beyond E is excluded by construction. Exactly-once within retry horizon. With idempotent
ledger appends and deduplicated outbox/inbox, non-idempotent tool effects are applied at most
once per idempotency key (proof sketch in §7).

3.5 Assumptions

Unless stated otherwise, we assume: (1) at-least-once delivery of messages to nodes; the router
enforces per-key order; (2) deterministic RNG with recorded seeds/offsets; δ, λ are pure; (3) the
ledger provides idempotent append with durable ordering per key; (4) policy monitors (Π) are total
and run before external effects; locale tags can only narrow on forks.

4 The G9 Graph Kernel

4.1 Purpose

G9 orchestrates a set of K12-compliant nodes into a typed, analyzable graph. Edges carry typed
messages; orchestration slots elevate control-plane concerns to first-class components.

4.2 Definition (slots and laws)

A G9 deployment is a tuple with nine roles:

1. Typed node/edge set of K12 episodes.

2. Router : message dispatch with per-key ordering guarantees.

3. Scheduler : progress/fairness; bounded iteration on cyclic subgraphs.

4. Ledger : append-only, tamper-evident event log (episode/edge/tool events).

5. Metrics: structured counters, histograms, spans.

6. Monitor : graph-level Π that cannot be bypassed by nodes.
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7. Topology: static checks (type compatibility, guarded SCCs).

8. Ingress/Egress: schema-bound boundaries with capability checks.

9. Registry: model/adapter identities and validation artifacts.

Graph laws. (1) No hidden I/O: All edge I/O is mediated by E and recorded in the ledger.
(2) Guarded cycles: Strongly connected components (SCCs) must declare bounds or convergence
witnesses (e.g., decreasing variant). (3) Policy non-bypass: All ingress/egress pass through Π;
monitor verdicts (allow/deny/redact/require-human) are binding. (4) Ordered delivery per key:
The router preserves per-key order; dedup is keyed by (graph,node,key).

Router QoS contract. The router exposes a per-key serialization domain such that any two
messages with the same (graph, node, key) are delivered in program order or not at all. Deduplica-
tion is with respect to span or message keys.

Lemma 1 (Monitor non-bypass). If all ingress/egress edges are mediated by the monitor and
every external effect requires a ledger append recorded as an edge event, then no node can cause
an externally visible effect without a monitor verdict.

Proof sketch. Any effect requires E and a prior append (K-12 Law); edge I/O flows through G9;
monitors gate ingress/egress. Composition enforces the check-before-effect discipline on all outward
actions.

4.3 Safety and liveness

Theorem 1 (Deadlock-freedom under guarded cycles). If every SCC has either (a) a de-
creasing well-founded measure or (b) a finite iteration bound, and the scheduler is fair, then every
run either progresses or reaches quiescence (no enabled edges).

Theorem 2 (Exactly-once effects within a retry horizon). Assume: (i) ledger append is
idempotent with a unique span key, (ii) outbox/inbox provide at-least-once delivery with dedup
by span key, and (iii) non-idempotent tool effects are conditioned on unseen span keys. Then
non-idempotent effects apply at most once per key despite crashes and retries.

5 The M7 Market Kernel

5.1 Seven primitives

We model cross-organization invocation and settlement with seven primitives:

1. Directory (capability discovery).

2. Offer (quoted terms and constraints).

3. Contract (capability + policy + budget binding).

4. Invoke (remote graph execution via typed edge).
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5. Evidence (tamper-evident transcript: model IDs, policy epoch, inputs/outputs digests).

6. Settle (atomic settlement; escrow-compatible).

7. Repute (optional reputation signal for future offers).

The primitives compose over G9: Directory→Offer→Contract→Invoke→Evidence→Settle, with
failure paths routed to compensations (SAGAs).

6 Worked Example

Consider two K12-nodes A and B with a guarded cycle: A → B → A. The scheduler enforces a
bound N or a decreasing variant on a convergence metric.

1. A receives m0, computes o0 = λA(ΣA,m0), passes pre, appends a span, performs an effect
via E , and emits m1 to B.

2. B consumes m1 (router preserves key order), repeats the audited step, and may emit m2 back
to A.

3. After N iterations or once the well-founded metric decreases to zero, the scheduler quiesces
the SCC.

Ledger evidence ties each step to (graph, node, key); replay uses recorded responses to reproduce
transcripts end-to-end.

7 Proof sketches and invariants

Effect containment. Immediate from the operational rule: all non-pure consequences require
an E step checked by Π and recorded by the ledger.

Audit-before-mutation. Treat the ledger as the single source of durable intent; state mutation
rules are guarded by the existence of a prior ledger append with a matching span id; otherwise the
transition is blocked.

Monotone quota. Model κ as a commutative monoid homomorphism from event sequences to
Nd
≥0; the monitor denies transitions with insufficient residual budget.

Deterministic replay boundary. Given (R seeds, model identity hash, policy epoch, Λ) and
a deterministic reduction of recorded effect-responses, the episode transcript is reconstructible by
induction on the step relation.

Exactly-once within retry horizon. Standard outbox/inbox with idempotent append and
dedup yields at-most-once application for non-idempotent operations. Ledger append forms the
commit point; duplicates map to no-ops.
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8 Evaluation

We propose a conformance suite and experiments:

1. Replay determinism. Inject seeds, crash/restart, and verify transcript equality.

2. Budget monotonicity. Fuzz invocation patterns; assert no decreasing counters and correct
deny-on-exhaustion behavior.

3. Locale narrowing. Randomized graph branching; assert Λchild ⊆ Λparent.

4. Ledger completeness. Mutation testing: attempt hidden I/O; verify monitor/ledger inter-
cepts or denies.

5. Exactly-once. Fault injection around commit (kill-before-append / kill-after-commit) and
show at-most-once externally-visible effect.

6. SAGAs compensation latency. Measure compensation tails under induced failures.

9 Type Discipline for Capabilities

Definition 2 (Capability type). A capability is a pair (r, ϕ) where r names a resource and ϕ is a
predicate over allowed operations and bounds (e.g., rate, budget, locales). The type of E-mediated
calls is indexed by (r, ϕ).

Law 5 (Least privilege). For any episode, the capability context C contains only capabilities
required by its declared graph edges and tools; Π rejects any call whose (r, ϕ) is not present or
whose preconditions fail.

Theorem 1 (Capability monotonicity). If sub-episode e′ is forked from e, then C(e′) ⊆ C(e) and
Λ(e′) ⊆ Λ(e). Consequently, e′ cannot perform any effect that e could not perform under the same
policy epoch.

Proof sketch. Forking copies and narrows contexts; monitor checks are enforced at call time.

10 Static Checks & Conformance

Graph linting. Validate (i) type compatibility of edges, (ii) SCCs have declared guards, (iii)
ingress/egress traverse the monitor, (iv) capability requirements are satisfied by node declarations.

Conformance suite. Provide executable tests that (a) attempt hidden I/O, (b) attempt locale-
widening, (c) attempt budget underflow, and (d) exercise exactly-once around commit points; all
must be rejected or deduplicated by the runtime.
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11 Implementation Status

We maintain a reference interpreter that exposes K12/G9 as TypeScript interfaces and enforces
the laws in this paper: effect containment, audit-before-mutation, budget monotonicity, and locale
narrowing. A conformance CLI runs the evaluation experiments in §7 and §9.

Appendix: Conformance Test Inventory (Text)

K-01 Effect containment; K-02 Audit-before-mutation; K-03 Budget monotonicity; K-04 Locale nar-
rowing; G-01 Guarded SCC termination; G-02 Router per-key ordering; G-03 Monitor non-bypass;
M-01 Evidence completeness; M-02 Settlement idempotency; M-03 Cross-org locale preservation.

12 Related Work

Typed effects and effect handlers offer principled composition of effects and separate pure semantics
from operational interpretation. Dataflow systems and tracing infrastructures illustrate graph
scheduling, fault-tolerance, and observability. CRDTs formalize replica convergence; SAGAs handle
long-running compensations; token/leaky-bucket schemes underpin robust quota enforcement. Our
kernels unify these ideas into minimal, checkable runtimes specialized for LLM-driven agent systems.

13 Limitations and Future Work

We do not claim semantic correctness of LLM outputs; instead, we bound and audit the process.
Future work includes (i) mechanized proofs in a small-step semantics, (ii) synthesizing least-privilege
capabilities from graph specs, (iii) integrating content-provenance manifests for generated media
by default, and (iv) formalizing cross-organization attestations and settlement as reusable protocol
modules.

14 Conclusion

K-12/G-9/M-7 isolate the essential laws for reliable agent execution. By lifting governance, evi-
dence, and liveness into kernels with typed effects, we make multi-agent systems analyzable and
auditable by construction. The reference implementation and conformance suite enable repro-
ducible deployments and third-party verification.
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G-9 Orchestration Overview

Node A (K-12) Node B (K-12)

Router

Monitor Π Ledger L

-
per-key order

�

?

?

-
allow/deny

-
append span

Figure 1: G-9 orchestration: K-12 nodes connected by typed edges, with router (per-key order),
monitor Π enforcing policy, and ledger L for append-only evidence.
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